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SUMMARY 
The governing equations for depth-averaged turbulent flow are presented in both the primitive variable and 
streamfunction-vorticity forms. Finite element formulations are presented, with special emphasis on the 
handling of bottom stress terms and spatially varying eddy viscosity. The primitive variable formulation is 
found to be preferable because of its flexibility in handling spatial variation in viscosity, variability in water 
surface elevations, and inflow and outflow boundaries. The substantial reduction in computational effort 
afforded by the streamfunction-vorticity formulation is found not to be sufficient to recommend its use for 
general depth-averaged flows. For those flows in which the surface can be approximated as a fixed level 
surface, the streamfunction-vorticity form can produce results equivalent to the primitive variable form as 
long as turbulent viscosity can be estimated as a constant. 
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INTRODUCTION 

With the advent of more and more powerful desk-top computers, it is now possible to model 
complex recirculating natural flows in the setting of a small consulting firm's office. Two- 
dimensional (2D) shallow water flows are of greater interest in this regard because of their 
significance in environmental engineering, oceanography and coastal engineering, to name a few 
examples. These 2D flows are most often turbulent, and so the modeller must utilize models and 
numerical solution approaches somewhat different from laminar flow models. The limits of 
numerical flow modelling techniques are sorely tested by the demands of many of the turbulence 
models currently in vogue. 

Two important yet competing criteria in the development of this type of numerical flow model 
are: (1) maintaining reasonable computer central processing unit (CPU) time utilization and 
(2) obtaining numerical results which can reasonably approximate the solution of the continuum 
governing equations which are being modelled. The choice between the primitive variable and the 
streamfunction-vorticity formulation of 2D momentum conservation for an incompressible fluid 
involves these criteria and is the basis of subsequent discussion. 

BACKGROUND 

Governing equations for prediction of flow velocities in steady depth-averaged turbulent flow 
have been given by McGuirk and Rodi' and are presented in the following two momentum 
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conservation equations along with a conservation of mass equation as 

au au a i a  i a  1 
U-+ V-= -g-(h +z,) +--(hf,,) +--(ht,,) +-(T,, - ~ b , ) ,  ax ay aY p h  ax PhaY Ph 

av av a i a  i a  1 
ax ay aY p h  ax Ph aY Ph 

U-+ v-= -g-(h+Zb)+-~?,,)+--(h~,,)+-(T~,-Tb,), 

d a 
-(hU) +-(hV) = 0, 
ax aY 

(3) 

where x, y, U and V are the co-ordinate directions and their corresponding depth-averaged 
velocity components. The equations result from averaging the full three-dimensional equations 
through integration over the vertical depth. A distinction is therefore made between the depth- 
averaged stress terms (?,,, ?,, and ?,,) and boundary stresses (zsx, Tbx, T,, and Thy), where the 
former result from their planar counterparts while the latter are surface and bottom stress 
components evaluated at the limits of the depth integration. The depth of water at  a given point is 
h, and zb is the distance of the bottom boundary from an arbitrary datum. Gravitational 
acceleration g acts normal to the x-y plane, and consideration of variations in density p is not 
included. 

The equation set (1)-(3) is not closed without a model of the stress terms. In this paper the eddy 
viscosity will be utilized in closure of the equation set because of its wide use. The depth-averaged 
stresses thus become 

--2v,-, fxx - au --2v,--, fy, - av - = v ,  fx, (t -+- ;:), 
P ax P aY P 

where v, is a depth-averaged eddy viscosity. In tensor form these become 

= V,(VV + VVT), 
P 

(4) 

where v is the velocity vector, with the superscript T denoting the transpose of the tensor. 
The governing equations cannot be transformed to the familiar form of the vorticity transport 

equation unless the physical setting considered is limited to a nearly flat bottom boundary (zb =O 
everywhere) and the flow depth is nearly constant everywhere. This assumption is sometimes 
called the rigid lid assumption. While this is a significant restriction, there are quite a number of 
practical situations in which this may be assumed. Still, this limitation is a negative aspect of 
streamfunction-vorticity formulations of the class of problems considered here. The vorticity 
transport equation is.somewhat different than that for laminar flow, and in tensor form it is 

Note that T, and Tb are now vector quantities as well as the vorticity 0, but since only 2D flow is 
assumed, its scalar magnitude is 

At this point the surface and bottom stress term will be simplified for presentation purposes, 
because ‘5, and Tb are treated similarly. Further equations will consider only bottom stress and 
utilize the following friction coefficient (C,)  formulation: 

w = J V  x V J  (7) 

Tb = C,v(v*v)”2. (8) 
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The last two terms of equation (6) represent the difference from the form of the vorticity 
transport equation for laminar flow of a Newtonian fluid. The origin of the first extra term is 
apparent when it is remembered that the vorticity transport equation is generated by taking a 
cross product of the del operator and the vector momentum equation. The other extra term has a 
similar origin but is also the result of allowing v, to vary spatially, as is generally the case in 
practice. It is not uncommon (see Oliver,2 for example) to ignore this term in finite difference 
solutions of the vorticity equation. The extent of errors associated with ignoring the term will 
depend upon the variability of vt and the mesh refinement. 

The solution for depth-averaged flow velocities is often not the end goal of the modeller. The 
velocities may then be used to determine movement of contaminants, tendency towards bottom 
scour and other secondary variable determinations. A general transport equation typical of those 
described is 

v.Vq5=V*(atVq5)+s/ph. (9) 
Here 4 is a scalar contaminant, s is a volume-distributed source of 4, and a, is the turbulent 
diffusivity of the flow. The turbulent diffusivity is of the same order as the turbulent viscosity and is 
often taken to have the same value locally. 

FINITE ELEMENT FORMULATIONS 

With the simplifications described previously, the element level residual equations for the 
primitive variable form of the governing equations using a Galerkin formulation are 

R l i  = 6. Ni [V - Vv + g Vh - C,v(v * v ) ” ~ ]  dS2 

+ V N ,  - v * [V,(VV + v v  )] dR- ire Nivt(Vv + VvT) - ndr, (10) 

where Re and re are the element interior domain and boundary respectively. The form of these 
nodal residuals (i corresponds to node i )  follows the form of Hood and Taylor3 as modified by 
Schamber and Larock4 for spatially varying viscosity flows. The nodal variable v is interpolated 
biquadratically with Lagrangian shape factors as 

v = c  (NjVj) 
j 

and h is interpolated bilinearly with a different shape factor M i  as 

h=C ( M j h j ) .  
j 

It is important here to note that h appears only as Vh in equation (10) and does not appear in 
equation (1 1). This is due to the rigid lid assumption, and so only the slight variations in depth 
about the uniform depth need to be calculated in h. 

Before the streamfunction-vorticity residuals can be defined, the streamfunction Y must be 
defined indirectly by its derivatives as 

u = ayrlay, v= - ay/ax, (14) 
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so that the constraint equation resulting from the definition of w is 

w =  -V2Y. (15) 

Following Campion-Renson and Crochet5 as later expanded by Peeters et aL6, the Galerkin 
residuals can be written as 

Ri i  = [NiVw - VY + VN, - (v,Vw)] dR- N,Va) - n dT + NiV. [C, V(V - v ) ' / ~ ] ~ R ,  (16) be Ire 6. 
R i i =  (VN,.VY-Nio)dQ- NiVY .ndT. (17) 1. {re 

The advantage of this form of solution for the independent variables Y and w is that specification 
of Y results in no need for specification of the boundary integral of equation (16), and specification 
of the velocity tangential to a boundary is considered through the boundary integral of 
equation (17). Note that the same quadratic weighting and shape function Ni is used in 
equations (16) and (17). This differs from the preferred formulation of Peeters et aL6 in that Y and 
Q are both interpolated quadratically rather than w linearly and Y quadratically, but further 
discussion of this difference will be deferred until the discussion of model results. 

The last term of equation (16) is not compatible with the Co-continuous interpolation functions, 
because secondary derivatives of the primary variable Y appear in it. Upon applying the usual 
Green's transformation and substituting for velocity in terms of Y, this term may be written 

Ni[Vx [C,v(v.~) ' /~](dQ=- VYXVN~C,(V'€"VY)'~~~R+ CfNiVY xn(VY-VY)dT. 6, s, Jre 

The boundary integral introduced in equation (1  8) is not evaluated on specified Y boundaries, and 
on inflow or outflow boundaries the integral will be zero if the velocity tangential to the outflow 
boundary is specified as zero. An alternative to the substitution of equation (18) into equation (16) 
can be considered if spatial variations in v - v  can be taken as negligible with respect to spatial 
variations in U or V(this will not be true for strongly swirling or accelerated flows). The following 
approximation will then be applicable: 

NilV x [ C,v(v * v ) ~ / ~ ]  IdQ=lne NiCf(VY - VY) o d R .  L (19) 

An advantage of this form is the lack of boundary integrals to be considered; furthermore, it is less 
non-linear than the more complete form. 

Both the primitive variable equation set and the streamfunction-vorticity set are non-linear. 
Newton-Raphson iteration is used to obtain converged solutions utilizing the full 
Newton-Raphson step in the primary variables. 

RESULTS 

Two flow geometries which have been examined extensively in computing laminar flow, the driven 
cavity and flow over a step, have been chosen for the comparison of the two forms. The driven 
cavity is a square region in which three walls are fixed and one side wall moves with a constant 
velocity. The step flow is described by a specified velocity profile through a channel of constant 
width, after which the channel abruptly expands to double its width. 

In the context of depth-averaged flow the driven cavity can be used as a model of a stilling 
region next to a river, and step flow is an abrupt expansion of a rectangular channel. The velocity 
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profiles of the depth-averaged flow computations reduce to the standard cavity and step cases as 
Cf goes to zero or h grows large. 

As noted earlier, the form of solution of the Y-a set is somewhat different than the unequal- 
order interpolation scheme of Peeters et d6 As a basis for comparison, creeping cavity flow was 
calculated using the unequal as well as equal-order interpolation forms. The creeping flow is 
forced by assuming that v,  is much larger than the moving wall velocity, so that the Reynolds 
number based on a constant v,, the moving wall velocity and the cavity length goes to zero. Cf was 
set to zero and thus the problem becomes linear, and the Newton-Raphson method converges in 
one iterdtion. Utilizing a fine mesh of 196 (14 x 14) elements, the results of the two methods were 
virtually indistinguishable, but the computation time was significantly less for the unequal 
interpolation. A plot of vorticity contours is shown in Figure 1. While this plot agrees with that of 
Campion-Renson and Crochet,' it is worth examining in closer detail. An expanded view of the 
upper right-hand corner of Figure 1 is shown in Figure 2. The extreme fluctuations of w cannot be 
cured by mesh refinement, but are due to the inability of V'Y to define w near the corner where the 
derivative of Y is discontinuous, as pointed out by Thus the wiggles exist for both equal and 
unequal interpolation forms, and conservation of mass is less accurate near the corner as a result. 
It should be noted though that global conservation is still ensured through the specification of a 
constant value of 'P along the border. A possible resolution of the problem would be use of C'- 
continuous interpolation at least at element boundaries, as proposed by Utka and Carey.' This 
penalty form could not be used here, however, because continuity is not enforced on global 
boundaries. The usual form of use of the higher-order continuity defeats one of the basic 
advantages of '3-co forms in that more nodal unknowns are introduced. 

Figure 3 compares the horizontal velocity predictions of the 'I-w and the U-V-h forms across 
the midplane of the cavity for a flow with spatial variation in v,. The previous element mesh was 
used for both calculations. The viscosity is arbitrarily specified, with v,  equivalent to a cavity 
Reynolds number of 1000 at the walls, increasing quadratically to create a local Reynolds number 
of 10 at the centre. Although arbitrary, the eddy viscosity distribution has near-wall variation 

I / 1 

Vorticity , Re = 0 

Figure. 1. Vorticity contours for zero-Reynolds-number cavity flow 
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Figure 2. Expanded corner view of zero-Reynolds-number vorticity for a cavity. 

Figure 3. Comparison of mid-cavity velocity profiles for spatially varying viscosity 

similar to that observed experimentally, in the sense that the lowest viscosities appear nearest the 
walls and the viscosity increases rapidly away from the walls. The Y-OI solution cannot 
adequately resolve the effect of variation in v,  upon velocity, as evidenced by the more nearly 
parabolic lower portion of the profile. One of the causes of this effect is that the last term of 
equation (6) was neglected. This term could not be included unless higher-order continuity were 
introduced, because of the higher-order derivatives in the term. Another reason for the difference 
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in profiles is that the Y%I equation set could not be made to converge stably unless a single 
averaged value of v, was taken for each element. The velocity profile for the U-V-h solution is as 
expected in that the strong increase in v, away from the wall produces a flow parallel to the wall 
opposite from the moving wall, which is similar to turbulent channel flow with the strongest 
gradients nearest the wall. One might also expect this type of profile, because channel flow profiles 
of turbulent viscosity have been found experimentally to be parabolic normal to the wall. It should 
be made clear though that actual turbulent flow profiles for driven cavity flow are significantly 
different,' because the turbulent viscosity field is not symmetric about the cavity centre as specified 
in this test calculation. 

The 'P-w prediction for the variable viscosity case was made to more nearly approach the 
U-V-h prediction when the row of elements adjacent to the moving boundary was subdivided 
into two rows. The predictions came very close when a further subdivision was made, although the 
zero-velocity point was approximately 0.05 of a cavity width lower. These results merely reflect the 
fact that mesh refinement in high-gradient areas will generally improve a solution. The results may 
also be interpreted to indicate that the primary error introduced in "--a modelling of variable 
viscosity flows is due to the assumption of constant v,, rather than the omission of the last term of 
equation (6). This should be true of nearly all flows, because Vv, will nearly always be significant in 
the same vector direction as the major components of the velocity shear tensor, with which it has a 
cross product in the omitted term. This is because the highest viscosity variations normally appear 
near boundaries where flow is nearly parallel to the boundary, and because the greatest gradients 
are normal to the boundary. 

The capability of the two forms to predict bottom friction effects was tested by using a friction 
coefficient of 0.01 with a flow depth 0.1 times the length of the cavity side and a constant eddy 
viscosity producing a cavity Reynolds number o f 4 0 .  Both forms were able to predict the 
flattening of the velocity gradients due to the bottom drag. Figure4 is a comparison of the 
centreline velocity profile with and without the drag. The curves are valid for both Y- and 
U--V-h solutions within 0.1 YO, and it should be noted that the modified form of the bottom term 

- _. - - -  - With Dro Cosf. 0.0 1 -- Without %roo 

-- - 1 .oo -0.50 0.00 0.50 
Normalized Velocity 

Figure. 4. Comparison of midcavity profiles with and without bottom drag 
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from equation (19) in the ‘4-w form was within 0.5% of the plotted profile. Given the inaccuracy of 
determining C, in practice, the approximation appears acceptable. 

The velocity fields predicted above were used in a contaminant transport prediction using the 
same computational grid as the velocity predictions. Equation (9) was solved using nine-node 
quadratic interpolation for 4 with the source s taken as a linear function of 4. The form of the 
source term is taken as a first-order decay given by 

S =  -k+. (20) 

A uniform distributed flux of 4 was applied along the moving wall of the cavity. The predictions of 
4 were very close using both U-V-h and ‘4- to determine the convective velocities. Both forms 
exhibited global conservation of 4 to within 0 1 %? which is not surprising because of the fine mesh 
used and a conservative form of the convection term in the finite element equations (in the form of 
flux terms as suggested by Gresho et ul.”). 

I t  was found however that the form of boundary condition applied using the U-V-h form 
affected global conservation of the contaminant. Figures 5 and 6 are predictions of 4 contours for 
which two different forms of specification of moving wall velocity were applied in the U-V-h 
solutions. For the first, the corner node velocities were set to zero, while for the second, U was set 
to the moving wall velocity and V to zero. As noted by Hughes et ul.,ll velocity predictions are 
slightly different depending upon the form used, and Figure 7 illustrates the problem with the 
second form. Flow is actually allowed to ‘leak’ out of the fixed wall when quadratic interpolation is 
forced through two-velocity nodes and one non-zero-velocity node. Even though a very small 
corner element was used (0.025 x 0.025 based on cavity length), the first-order decay term 
accounted for only 95% of the flux of 4 specified. It is also interesting to note that the ‘leaky’ 
boundary cqndition produces instability in the 4 solution, as indicated by the wiggles in the 
fingers protruding from the upper right-hand corner of Figure 6. The velocities normal to the 
moving wall switch sign in a periodic fashion as the corner is approached. 

Figure 5. Contaminant concentration contours for driven cavity flow with no flow out of cavity 
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Figure 6. Contaminant concentration contours for cavity flow with interpolated flow out of cavity 
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Figure 7. Interpolation resulting in flow out of the cavity 

The Y-w form did not fare so well in comparison when the Row was not completely enclosed. 
Figure 8 is a plot of contours for flow through a channel expansion of Reynolds number 133 
based on the upstream channel width and a constant eddy viscosity. Note that the separation 
streamline reattaches near 6.0 step heights downstream and that the U-V-h reattachment point 
shown by the X is farther downstream. The reason for the difference is the presence of streamline 
curvature around the separation comer. The inability of the “-to form to satisfy equation (15) 
near this comer, at  which the normal derivative of Y becomes undefined, allows this to occur. 
Thus the problem was consistent at all Rows and was accentuated for higher Reynolds numbers as 
demonstrated by Figure 9. The primitive variable predictions agree with many published 
predictions (see Polansky et al.’’) for a completely developed inlet Row. 
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0 2 4 6 

Figure 8. Streamlines for flow through an asymmetric expansion with streamfunction-vorticity form 

r. 

/ ’ /  ‘ /’ 
, o :  d >.’ .- - /’r 
V 0: / 
Q) 92 
E m -  ___ Primitive Variable .. _ _ _ -  

‘ - w  W is Upchannel Width 

n a+, I I 1-1 I r I q ~ t 7 - r  I T I  I r~ I r r t  T t r-i-r-ri r l  
6.00 50.00 100.00 150.00 200.00 

REYNOLDS N U M B E R  
Figure 9. Reattachment length predicted by primitive variable and streamfunction-vorticity forms 

The Y-co predictions were made to agree with the U-V-h predictions when Y was specified as 
the same value as the upstream wall value one node out into the flow past the expansion. This is 
equivalent to the specification of separation streamlines sometimes used in finite difference 
calculations. It is not a pleasing alternative in general, however, because the direction of the 
separation streamline is not necessarily known for more oblique corner angles; furthermore, it 
requires that separation at such corners be assumed a priori. 

CONCLUSIONS 

It is clear that the depth-averaged form of the momentum equations for turbulent flows require 
special handling for FEM solution, especially with regard to the bottom shear terms. Two 
mathematical descriptions have been presented, and it is felt that they perform satisfactorily in 
properly modelling bottom effects using either the momentum or vorticity description. It may be 
concluded that, for this class of flow prediction problem, the primitive variable form of description 
is to be preferred over streamfunction-vorticity when FEM solution is employed. The reasons for 
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the preference are difficulties in the ‘4- approach in properly dealing with spatial variation in 
turbulent viscosity, difficulties in dealing with prescribed inflow boundary conditions and the 
inability to describe spatial variations in water surface elevations. The significant savings in 
computational effort (as compared to that of primitive variable solution) cannot compensate for 
the deficiencies described. 
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